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ABSTRACT

The structural index (SI) is based on the concept of Euler
homogeneity, a description of scaling behavior. It has found
wide use in potential-field depth estimation and is a constant
integer for simple sources with single singularities (points, lines,
thin-bed faults, sheet edges, infinite contacts). For these cases,
the SI is identical to the index of a simple power-law field fall-
off with distance. The simple Euler formulation is only strictly
correct for such simple sources and integer SI values. The
widespread use of the simple Euler method on more complex
structures, using fractional SI values is likely to produce mis-
leading results because the SI is no longer a constant for any
given source. We examine a recently published example that

used an arbitrary SI to estimate depth to the base of the crust for
Africa and produced misleading results. Extension to more
complex sources such as tabular bodies or thick steps requires
one of several more generalized approaches, which recognize all
variables with spatial dimensions (including source size param-
eters) and may make use of negative SI values, address omitted
variable bias or use an explicit multiple-source formulation. An
alternative approach using homogeneity via differential similar-
ity transforms is probably the best way forward. An error in the
literature is corrected: the gravity SI for a finite step is −1, but it
requires a more generalized formulation. We develop a new ter-
minology, fractional SI, s, which is permitted to take fractional
values and makes no pretense to honor concepts of homo-
geneity.

INTRODUCTION

The structural index (SI) is a fundamental parameter in potential-
field depth estimation. It occurs implicitly or explicitly in virtually
all depth estimation techniques because it encapsulates a fundamen-
tal truth — source depth information ultimately resides in the field
curvature. But, the field curvature from a source depends on the
geometrical nature of the source. The SI conveniently expresses the
geometrical nature of the source, thereby allowing decoupling of
the depth and geometrical contributions to the observed field. The
SI concept was originally developed in the context of depth estima-
tion using Euler homogeneity (Hood, 1965; Ruddock et al., 1966;
Slack et al., 1967; Thompson, 1982; Reid et al., 1990) but has also
found wide use in automated methods such as source parameter im-
aging (SPI) (Thurston and Smith, 1997), source location using total-
field homogeneity (Thurston and Smith, 2007), tilt depth (Salem
et al., 2007), ADEPT (Phillips, 1979), depth from extreme points
(Fedi, 2007), and curvature itself (Phillips et al., 2007). It is

embedded in methods such as those of Werner (1955), Hartman
et al. (1971), and Naudy (1971), which separate dike and step cases.
It is also implicit in many classic manual methods (Henderson and
Zeitz, 1948; Peters, 1949; Vacquier et al., 1951; Smellie, 1956).
These and most subsequent developments were restricted to the

special case of sources that have no length parameters (thickness,
width, depth extent) and are thus characterized by a lone singularity
beneath the profile (sphere center, line end, line, thin bed fault, sheet
edge, and infinite step). All the model size parameters (apart from the
irrelevant sphere and cylinder radius) are either negligible or infinite.
Such “single-point” sources have one vital factor in common. Their
anomalous fields may be described in terms of a simple power law.
This assumption is critical to their simplicity and their wide adoption
but is not a guarantee that they are universally applicable to interpre-
tation problems in real geology, which includes less tractable struc-
tures such as thick sheets, finite steps, and yet more complex shapes.
Reid et al. (2014) discuss the appropriateness of undertaking

Euler deconvolution for a given geologic setting, data preparation
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(sampling interval, grid interval, and coordinate system) and prepro-
cessing (gradient calculation and filtering), and proper parameter
choice needed to perform a valid conventional Euler deconvolution.
The parameters discussed in Reid et al. (2014) are window size,
solution acceptance criteria, and SI. Here, we expand upon the dis-
cussion of the SI.

THEORY

Euler homogeneity for simple sources

The SI concept has its roots in Euler’s homogeneity relationship.
Following Courant and John (1965), a function fðvÞ depending on
variables v ¼ ðv1; v2; : : : ; viÞ is said to be homogeneous of degree
n if

fðtvÞ ¼ tnfðvÞ; (1)

where v ¼ ðv1; v2; : : : ; viÞ is the set (vector) of an arbitrary number
of variables (components) with respect to which the homogeneity of
the field f is tested; t is a real number, say t > 1; and n is the degree
of homogeneity of fðvÞ. The variable n is an integer. Equation 1 is a
statement about scaling behavior.
Such a homogeneous function also satisfies Euler’s differential

equation:

v∇fðvÞ ¼ nfðvÞ: (2)

Although this formulation is much more general, it does apply to the
particular case of single-point sources, which follow simple power-
law field fall-off functions. Such sources show homogeneous grav-
ity and magnetic fields, as listed in Table 1. Following convention,
we define the SI as

N ¼ −n: (3)

The applicable power law takes the form of

F ¼ C∕rN; (4)

where F is the gravity anomaly or total-field magnetic anomaly; C
is a constant, which includes factors such as anomalous mass or
magnetization; and r is the distance between the source critical
point and the observation point. Henderson and Zeitz (1948) and
Smellie (1956) propose much the same set of elemental sources,
although they describe them in terms of simple assemblages of
poles or dipoles (Table 1). For the cases of the sphere (point source)
and the horizontal cylinder (line source), these methods give the
depth to center and not the more desirable depth to top. Their radii,
famously, do not affect the shape of the observed anomaly field and
may therefore be neglected quite legitimately.
In practice, for the single-point case, equation 2 is presented in

the form,

ðx − x0Þ
∂F
∂x

þ ðy − y0Þ
∂F
∂y

þ ðz − z0Þ
∂F
∂z

¼ NðB − FÞ; (5)

where B is the constant background value of the field F.

DISCUSSION

Integer nature of the SI

It is vital to remember that N and n are integers. This is innate to
the homogeneity/scaling formulation. Noninteger values represent a
departure from the basic assumptions of homogeneity and single-
point sources, which are necessary to obtain an easily solved linear
equation. By consideration of the power-law special case (equation 4),
some workers extend the formulation to noninteger values (e.g.,
Thompson, 1982; Reid et al., 1990; Tedla et al., 2011), but noninteger
values of N or n are inevitably inconstant under variation of the
source-observation vector (Courant and John, 1965; Steenland, 1968;
Ravat, 1996). They have been thought to represent transitional cases
between the simple power-law sources listed in Table 1. Because
noninteger values of N are not constant for a given source, they vio-
late the fundamental assumptions of the technique. Thus, a finite step
viewed sufficiently close will show magnetic anomaly behavior of an

infinite step, and from sufficiently far, it will be
seen as thin, with all intermediate distances yield-
ing transitional behavior.
Theoretical considerations rule out the notion

of describing transitional behavior with a frac-
tional index. Recall that a harmonic function in
two variables (say, x and z) is the real part of a
complex analytic function. That is, if fðx; zÞ is
analytic, i.e.,

fðx; zÞ ¼ uðx; zÞ þ ivðx; zÞ; (6)

then

∂2u
∂x2

þ ∂2u
∂z2

¼ ∂2v
∂x2

þ ∂2v
∂z2

¼ 0: (7)

Furthermore, all the singularities of a potential
field are poles, and these poles, by definition,
are of integer order. Thus, x and zmust have only
integer exponents. This implies that uðx; zÞ and
vðx; zÞ are integral ordered, homogeneous, or
otherwise.

Table 1. Structural index for magnetic (M) and gravity (G) sources of different
source geometries.

Source Smellie model SI (M) SI (G)3

Sphere4 Dipole 3 2

Vertical line end (pipe) Pole 2 1

Horizontal line (cylinder)4 Line of dipoles 2 1

Thin bed fault4 Line of dipoles 2 1

Thin sheet edge Line of poles 1 0

Finite contact/fault5 — 0?6 −1
Infinite contact/fault — 0 7

3Some of these elemental gravity models would be difficult to observe in practice.
4Gives depth to center, not depth to top.
5To be handled properly in a valid homogeneity framework, this model requires a more complete nonlinear
formalism incorporating the thickness and recognizing multiple source edges in the same window (Stavrev
and Reid, 2007, 2010) — See text.
6We are not aware of any published proof of this value, but we suggest it on grounds of its relationship to the
gravity SI of a source with the same geometry.
7The infinite block/contact/fault model has an infinite gravity field anomaly. It is not a useful model.
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The same point may be made in a more graphic or “practical”
way by considering an infinite step, a thick step, and a “blob” source
body (Figures 1–3).
Figure 1 shows an infinite step. It only requires one vector r to

connect to its edge. This case is easily treated, using a magnetic SI
of zero (Reid et al., 1990). There is no equivalent gravity case be-
cause that has an infinite anomaly (Table 1).

Figure 2 shows a thick step. It will often be a good model for a
fault. We now require r1 and r2 to locate its top and bottom edges.
Its anomaly is effectively the difference between two infinite blocks
such as that in Figure 1. This is not a good model for simple Euler
deconvolution, although it is common and geologically interesting.
If we insist on using only one vector, we probably prefer r1 to the
top edge, but the SI now becomes a function of r1, and for the mag-
netic case, it can vary from zero (close to the edge) to one (distant
from the edge) at a rate that depends on the step thickness.
Figure 3 shows an irregular source body, which is always a useful

source type, but generally intractable. We will often be interested in
rT, the distance to the top, but many methods (including simple Euler
deconvolution) will respond to r, which points to some undefined
location within the irregular body. The end point of r is likely to vary
as we change the observation point, and the SI will certainly be a
function of the observation position and r. Simple Euler deconvolu-
tion alone (or indeed any simple method) is unlikely to locate the
body top directly.

Euler homogeneity for other sources

The above restriction to simple sources with integer power-
law fields is a theoretical necessity if we require simple and linear

Figure 1. A block edge or infinite contact/fault (Table 1) forming a
single-point source body with position defined by one (x, y, or z)
location. We work with one distance variable r. The magnetic
anomaly displays simple single-point homogeneity and is easily
handled by simple Euler deconvolution to locate the block edge.

Figure 2. A thick block or finite contact/fault (Table 1) with two
edges forming a multiple-point source body with position defined
by two (x, y, or z) locations. Simple Euler deconvolution cannot
cope with two r values. If we neglect r2 and work only with r1,
we find we have a fractional SI (fSI), variable with observation
location. The position tends to be indicated some way down the
edge. Alternatively, we require a more sophisticated treatment.

Figure 3. The general case of a source body with a complex shape.
We seek the depth to top defined by the vector rT. Most geophysical
systems will give us r, which provides a location at some uncertain
place, probably within the source body. The simple approach with
one r value gives a magnetic SI varying between zero and three,
depending on observation position, and a body location varying be-
tween the top and the center of magnetization or center of gravity.
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versions of Euler’s differential equation. It is the basis of much of
the work on Euler deconvolution and related methods to date. The
restriction has consequences because many realistic source types
such as dipping thick sheets and faults of moderate throw are im-
pervious to the method. These sources require at least two locations
along the profile (both edges) to describe them. They generate
anomalous fields that cannot be written as a simple constant-
coefficient power law because they are effectively the difference
between two power laws (one for each edge). An enhancement to
conventional Euler deconvolution overcomes this restriction by
reverting to the original, unrestricted version of homogeneity as ex-
pressed by equations 1 and 2 and including all the variables with
spatial dimensions (including those of the source body) in the analy-
sis instead of assuming a sole point and referring all observation
distances to that point. The formulation has been developed by
Stavrev and Reid (2007) and shown in action on the gravity
anomaly of a thick step in Stavrev and Reid (2010). Such a source
still has a homogeneous field in the sense intended by Euler, as long
as we do not impose the artificial requirement that the source body
must have exactly one reference location. But the resulting Euler
differential equation is not linear, and therefore the formulation is
more difficult to implement (although more realistic and ultimately
more rewarding).

Solving for source depth and SI

Source depth and SI as expressed in equation 5 are not fully in-
dependent variables (Ravat, 1996; Barbosa et al., 1999; Melo et al.,
2013). They are coupled strongly enough that solving for them si-
multaneously is an ill-posed problem. Thompson (1982) discusses a
direct solution for SI but reports that his formulation returned SI and
depth values that were both biased on the high side. Barbosa et al.
(1999) perform a formal analysis and verify the existence and seri-
ousness of this problem, but also develop an effective solution that
exploited the value returned by solving for the background field B
(equation 5). They perform the Euler analysis for multiple fixed (in-
teger) values of SI and choose the value that minimizes the corre-
lation between the observed field and the returned value of B for any
given anomaly. The technique of extended Euler deconvolution
(Mushayandebvu et al., 1999, 2001; Nabighian and Hansen,
2001; FitzGerald et al., 2004) offered another approach to solving
for SI and depth simultaneously. It has been implemented commer-
cially, but in its present form it treats the SI as a continuous variable
and therefore returns a range of noninteger values. We are not aware
of any covariance analysis of the extended Euler formulation. We
therefore cannot be sure of the reliability limits on the results when
we solve for depth and SI simultaneously. The worst of the problem
can sometimes be avoided by identifying and using the locations
immediately above source body critical points. This is the case with
the improved SPI (iSPI) (Smith et al., 1998) and analytic signal and
Euler deconvolution (AN-EUL) (Salem and Ravat, 2003) methods,
but the fSI so found remains even then a function of the observation
height, so that it is not a source body constant.

Incorrect SI values and some other errors
in the literature

Reid et al. (1990) consider the gravity of a finite step and derive
an SI value of þ1. This value was subsequently used in at least one
case study (Keating, 1998). Unfortunately, the derivation contained

errors and more recent work (Stavrev and Reid, 2007) using a more
generalized approach has shown that the correct value is in fact −1.
But this case cannot be properly addressed by most current or com-
mercial implementations.
Reid et al. (1990) use an SI of 0.5 (among others) on a real

magnetic data example. We now regard this as erroneous. Other
papers, starting with Slack et al. (1967) and too numerous to men-
tion, use noninteger SI values. As an example, we cite Tedla et al.
(2011) as a particularly egregious case history. Reid et al. (2012)
comment critically on this work. It uses a commercial implemen-
tation of classic grid Euler deconvolution (Reid et al., 1990) and a
“depth-tuning” approach to choose an SI of 0.5 on gravity data to
estimate the depth to the Moho under Africa from a satellite-derived
gravity model. They choose the value of 0.5 because it gave the best
average depth, but this was undermined by biases introduced by poor
choices of grid interval and window size. Additionally, the value
of 0.5 in the gravity case does not correspond to any plausible struc-
ture at the base of the crust, and it suffers from all the ills of the non-
integer SI discussed above. The work yields demonstrably unreliable
results.
In our view, it is an abuse of the method to treat the SI as a depth-

tuning parameter because its chosen value has explicit meaning in
terms of geologic structure.

Alternate homogeneity approaches

The problem of interfering sources (which is what gives rise to
the noninteger SI in many cases) can also be addressed by using a
multiple-source approach (Hansen and Suciu, 2002). This addresses
the problem of thick source bodies because they can be seen as the
difference between two steplike bodies. By using multiple order
gradients simultaneously, thick bodies can be handled. The price
is a loss of other kinds of information, such as the geometric details,
but depths can be generated more reliably.
The omitted variable bias (OVB) approach (Thurston, 2010) con-

fronts the problem directly. It recognizes that, in simple Euler ap-
proaches, relevant variables (such as body thickness) are omitted
and therefore bias the result. The method goes on to estimate
the bias and apply a correction, successfully in some cases.
The homogeneity property can be exploited in a radically differ-

ent way by use of differential similarity transforms (Stavrev, 1997;
Stavrev et al., 2009; Gerovska et al., 2010). This approach is much
more general, takes full advantage of the concept of homogeneity in
a fully general sense, and allows for interfering sources and multiple
(integer) SI values. It may well be the best way forward but has not
yet been widely implemented.

A parting of the ways?

For some time, the concepts of degree of homogeneity n and SI N
have been uneasy bedfellows. The convention has been to recognize
that, for the special source geometries of Table 1, their potential field
anomalies follow an inverse power law as expressed in equation 4
and n ¼ −N. From the earliest times (Slack et al., 1967), there has
been a great temptation to extend the concept of SI to fractional
values. We have made the case above that the degree of homo-
geneity is innately an integer. But clearly, if we are prepared to
ignore relevant source parameters to simplify a problem, and there-
by abandon the mathematical and physical benefits of homogeneity,
fractional power-law indices are present.
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Some workers may feel that we should explicitly define the SI in
terms of the power-law index, permit it to take fractional values, and
accept that it is no longer a source geometry constant but is a func-
tion of the vector r from the observation point to the chosen anchor
point on the source body. We suggest that any such practice should
use a distinct terminology. We propose that such a variable power-
law index be called just that (the power-law index) or be termed an
fSI and that the symbol N (which by convention is normally taken
to be an integer) be replaced with s. We make this proposal in rec-
ognition of the powerful forces behind an abandonment of the
concepts of homogeneity in favor of a practical approach, whereas
we seek to preserve the integrity of methodologies that continue to
honor homogeneity.
This approach would recognize the usefulness of methods such

as AN-EUL (Salem and Ravat, 2003) and iSPI (Smith, 1999), which
only use observations directly above source-body edges and
derive the fSI as part of the process.

CONCLUSION

The nature of the SI requires that it be an integer. Ultimately, it is
a scaling exponent. Noninteger values cannot be constant for a
given source, under variation of the source-observation vector. It
is possible to solve for the best integer SI for an isolated source by
exploiting the little-used background value B returned by most
practical implementations.
The simple Euler deconvolution formulation is only suited to

simple source types. To cope with more realistic sources, it is
necessary to use one of several more generalized approaches. These
include nonlinear versions incorporating body parameters, OVB,
multiple-source formulation, or differential similarity transforms.
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